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Abstract.  This paper presents a computer vision algorithm that segregates spurious
optical flow artifacts to detect a moving object.  The algorithm consists of six steps.
First, the pixels in each image are shifted to compensate for camera rotation.
Second, the images are smoothed with a spatio–temporal Gaussian filter.  Third, the
optical flow is computed with a gradient–based technique.  Fourth, optical flow
vectors with small magnitudes are discarded.  Fifth, vectors with similar locations,
magnitudes, and directions are clustered together using a spatial consistency test.
Sixth, similar optical flow vectors are extended temporally to make predictions
about future optical flow locations, magnitudes, and directions in subsequent
frames.  The actual optical flow vectors that are consistent with those predictions are
associated with a moving object.  This algorithm was tested on images obtained with
a videocamera mounted below the nose of a Boeing 737.  The camera recorded two
sequences containing a second flying aircraft.  The algorithm detected the aircraft in
82% of the frames from the first sequence and 78% of the frames from the second
sequence.  In each sequence, the false alarm rate was zero.  These results illustrate
the effectiveness of using a comprehensive predictive technique when detecting
moving objects.
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1  Introduction

The National Aeronautics and Space Administration (NASA) is currently
collaborating with the commercial aircraft industry to develop a supersonic
passenger airplane called the High Speed Civil Transport (HSCT).  One issue being
examined for HSCT is the replacement of the forward cockpit windows with
synthetic displays.  The imagery in these displays would be obtained from video
cameras mounted outside the aircraft.  A benefit of this configuration is that the
video imagery can be examined with computer vision algorithms to determine if
another aircraft is in the field of view.

The goal of this HSCT sub–project is to develop a computer vision algorithm
to detect aircraft that are moving in the video images.  One possible means of
aircraft detection could be based on pattern recognition.  However, because of the
relatively small target size (fewer than 30 pixels at distances greater than 1.0 mile)
and the background clutter, this technique was not chosen.  Instead, optical flow
(defined as the motion of brightness patterns in an image1) was selected as the basis
for detection because the object is moving in the scene, thereby producing a different
image velocity profile than the surroundings.  The rationale of searching for
variations in the optical flow pattern has proven useful for related types of object
discrimination.  For example, with images acquired with a moving camera, this
principle has been used to detect static objects located at different distances than a
stationary background2-6.  In addition, this principle has been used for detecting
moving objects against a stationary background7-11.  The temporal characteristics of
the optical flow profile can provide additional information about the reliability of
the computations.  A temporal approach (one that makes assumptions about the
evolution of image velocity over a sequence of frames) has been used in the
computation of accurate optical flow vectors in a static environment12-14.  However,
the purpose of those implementations was not to extract the locations of
independently moving objects.  Investigations that have used temporal information
for this purpose have not fully exploited it.  For example, a technique that separated
different classes of motion did not include temporal predictions about the
magnitude and direction of the optical flow vectors15 .  Instead, correspondence of
features in temporally adjacent frames was based only on the location of the optical
flow vectors.  A second technique that separated different classes of motion did not
fully utilize the temporal information because comparisons of optical flow vectors
were made over only two sequential frames at a time16 .  Moreover, both of these
approaches were based on images associated with a stationary camera, thereby
restricting the ambiguities in optical flow that may occur with a moving camera8.

In the current application, optical flow vectors are used to provide an
estimate of the future locations, directions, and image speeds of a moving object
(i.e., aircraft).  This type of prediction technique validates the computation of future
optical flow vectors, and is suited for conditions in which accurate optical flow
computations may be difficult due to real, noisy images, such as those obtained with
a moving camera directed at distant objects.

This paper first describes the algorithm, which is based on a gradient
technique.  Next, the paper describes an application of the algorithm for detecting a
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target aircraft in video images.  Finally, the results are quantified in terms of the hit
rate and false alarm rate for different prediction parameters.

2  Description of the algorithm

The optical flow algorithm computes vectors associated with a translating
object.  To detect and track the target, six steps are required.  These six steps are
outlined in the block diagram in Fig. 1.

Compensate for
rotation in frames

t-4 to t+4.

Smooth frames t-3 to t+3
with a spatio-temporal

Gaussian filter.

translational optical flow vectors
in frame t

9 sequential frames
(t-4 to t+4) and

aircraft yaw, pitch, and roll
at each frame

Compute optical flow
vectors in frame t.

In frame t, discard
vectors with small

magnitudes.

In frame t, extract
vectors that pass a

spatial consistency test.

In frame t, extract
vectors that pass a

predictive test.

repeat with
t=t+1

Fig. 1  Block diagram of the steps in the predictive optical flow technique.
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In the first step, the algorithm compensates for image motion caused by
camera rotation.  Compensation is based on aircraft navigational parameters (pitch,
roll, and yaw) recorded with the visual images themselves.  Each pixel in an image
surface is shifted according to the relative amount of aircraft rotation between it and
the reference image frame.  The reference image frame is simply the image frame at
which the optical flow vectors are being computed.  The eight frames prior to and
subsequent to each reference frame are compensated at a time, so nine frames are
used in each compensation process.  (Nine frames are required because five frames
are needed for the temporal support of the optical flow computations, and an
additional four frames are needed in the temporal smoothing process.)

In addition to undergoing rotation effects, the images can also contain motion
due to translation17 .  However, in this application image motion caused by aircraft
translation is not compensated since the resulting optical flow vectors have such
small magnitudes.  The optical flow vectors caused by camera translation are
negligible because the camera altitude was 4500 feet, the vertical field–of–view
(FOV) was less than 10 deg, and the speed was 150 knots (about 173 mph), producing
a maximum optical flow magnitude of 0.04 pixels/frame.  (The optical flow vectors
caused by rotation are not negligible because the rotation magnitudes are as large as
1.0 pixel/frame.)

In the second step, the image is smoothed with a spatiotemporal Gaussian
filter with standard deviations of one pixel–frame.  The spatial range is five pixels
and the temporal range is five frames.  These parameters are based on filter sizes
used in previous implementations of the gradient–based approach18 .

In the third step, optical flow vectors are computed using the gradient
constraint equation1:

    

∂I

∂x

dx

dt
+

∂I

∂y

dy

dt
= −

∂I

∂t
(1)

where I = I(x,y,t) is the image intensity in gray levels (0-255), x and y are the spatial
coordinates, and t is the frame time.  The inherent assumption of Eq. (1) is that a
given point in space produces constant brightness in the image as the point moves.
Because this equation represents the gradient constraint at a given pixel (x,y) and
frame (t), it can be rewritten in the following format:

      ∇I • v + It = 0 (2)

where ∇ I  =  [Ix Iy], Ix and Iy are the partial space–derivatives of I, It is the partial
time–derivative of I, and v  is the image velocity vector [dx/dt dy/dt]T.  In this
equation, the partial derivatives can be estimated by using linear regression to
compute the intensity change as a function of space and time surrounding each
pixel (i.e., the partial derivatives).  However, this process still leaves two unknown
parameters (the optical flow components).  Consequently, a second constraint is
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required.  The second constraint is based on the assumption that the velocity vector
  v  is constant within a small region19 .  Using this assumption, Eq. (2) is applied
within a small window to produce an over–constrained, linear system of
equations20 .  From this constraint, the quadratic error function E associated with
each optical flow vector is:

      
E(x,y,t) = ∇I(x+x' , y+ y' ,t)• v(x, y ,t) + I t(x+ x', y+ y' ,t)[ ]2

y'=−2

2
∑

x'=−2

2
∑ (3)

where x', y' ∈ {-2,...,2} to account for the 5 x 5 window necessary for the second
constraint.  In addition, a weighting function is included to give more emphasis to
the pixels in the center of the window than the periphery21 .  The resulting error
equation is:

      
E(x,y,t) = W 2(x' , y')[ ] ∇I(x+x' , y+y' , t)• v(x, y,t) + I t(x+x' , y+ y', t)[ ]2

y'=−2

2
∑

x'=−2

2
∑ (4)

where
W 2(x',y') = w (x')w (y')

and

    

w(−2) = w(2) = 0.0625
w(−1) = w(1) = 0.25
w(0) = 0.375

 
 
 

.

Consequently, each of the 25 image pixels in the window has a weight associated
with it.  The solution to Eq. (4) has the form:

ATW 2Av  = ATW 2b (5)

where

A = 
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As discussed by Barron, Fleet, and Beauchemin18 , the optical flow vector can then
solved using:

v  = [ATW 2A]-1ATW 2b (6)

This equation provides the optical flow vector at the pixel (x,y) at frame time t.
Because of the spatial window used in the computation, optical flow vectors are not
computed at points within two pixels of the frame border.

In the fourth step, optical flow vectors with small magnitudes are discarded.
A threshold of 1.5 pixels/frame was chosen because this value corresponds with a
target flying laterally to the camera at a relatively large distance and moderate speed,
e.g., a target at 5 nautical miles (5.75 statute miles) with a speed of 300 knots (345
statute miles per hour).  This threshold is small enough such that objects flying at
closer distances or higher speeds would not be missed.  Targets with smaller optical
flow vectors (due to a greater distance or smaller speed) could be detected by
reducing this threshold.

In the fifth step, spatially consistent optical flow vectors (called clustered
vectors) are extracted from the optical flow patterns using a spatial consistency  
test22-24.  Vectors that fail the spatial consistency test are discarded.  Each of the nine
vectors in a 3 x 3 window is defined as a clustered vector if the eight boundary
vectors have similar magnitudes and directions as the center vector.  To pass the
spatial consistency test, the following equations are applied to every pixel:

    M(i) − Mc < Mt for i=1,...,8 in a window (7)

    θ(i) − θc < θt for i=1,...,8 in a window (8)
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where M(i) and Θ(i) are the magnitude and direction of the optical flow vector i, Mc

and Θc are the magnitude and direction of the optical flow vector in the window

center, and Mt and Θt are the magnitude and direction thresholds (0.2 pixels/frame
and 10 deg, chosen empirically).  Reducing the threshold magnitudes can reduce the
false alarm rate.  However, the more robust technique used in this project reduces
false alarms with a predictive technique.

In the sixth step, the predictive technique is used to estimate the future
locations, magnitudes, and directions of the spatially consistent optical flow vectors.
Each of the clustered vectors in a given frame is extended temporally to make
predictions about the location, magnitude, and direction of optical flow vectors in
the next P frames:

X '(t+∆t) = X (t) + v (t)∆t (9)

where X '(t+∆t) is the predicted location of the optical flow vector in frame t+∆t and
X (t) is the computed location of the optical flow vector in the current frame t.  The

magnitude and direction of a predicted vector at t+∆t are the same as the those of a
reference vector at t.  For example, if frame 15 contains a clustered optical flow
vector at (x,y) coordinate (10,10) with a magnitude of 1.0 pixel/frame and a direction
of 90 deg, then a prediction is made that frame 16 will contain an optical flow vector
at (x,y) coordinate (10,11) with the same magnitude and direction.  If P=5, predictions
are also made about frames 17, 18, 19 and 20.  Because of this technique, a given
frame contained predictions from the previous P frames.  For example, if P=5, frame
16 not only contains predictions based on frame 15, it also contains predictions based
on frames 11, 12, 13, and 14.  Therefore, in each frame two pieces of information are
available: 1) the predicted optical flow vectors based on the previous P frames and 2)
the actual optical flow vectors based on steps 1 through 5.

In the predictive step, if the clustered optical flow vectors in a given frame are
temporally consistent with the predicted optical flow vectors from the previous
frames, the clustered vectors are marked as translational optical flow vectors.  (For
this application, translational optical flow vectors are defined as vectors associated
with an independently moving object with a velocity component perpendicular to
the camera line of sight.)  The temporal consistency test is defined as follows:
1) The location of acceptable translational optical flow vectors is restricted to a 5x5

window surrounding the predicted pixel location.
2) The magnitude is restricted to within ±0.25 pixels/frame of the predicted

magnitude.
3) The direction is restricted to within ±10 deg of the predicted direction.
To be accepted as a valid translational optical flow vector, all three components of
this test are required to be satisfied for P' of the previous P frames.  As presented in
the next section, the hit rate and false alarm rate can be modified by adjusting these
two parameters (P' and P).

A simplified example of the predictive step is shown in Fig. 2.  In this
example, four sequential frames are shown, each of which has a clustered optical
flow vector in it.  From each frame, predictions are made for the next three frames
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(so P=3).  In frame 4, the clustered optical flow vector is temporally consistent with
two of the previous three frames.  If P' is defined as less than three in this example,
the clustered optical flow vector in frame 4 passes the temporal consistency test, and
is therefore defined as a translational optical flow vector.

frame with
actual optical flow

frame with
predicted optical flow

KEY

FRAME 1 FRAME 2 FRAME 3 FRAME 4

Fig. 2  Simplified schematic illustrating the predictive portion of the algorithm.  In
this example, a clustered optical flow vector is present in four sequential frames.  In
each frame, predictions are made about the location, magnitude, and direction of the
optical flow vector in the next three frames (so P=3). (For simplicity, predictions are
not shown beyond frame 4.)  In frame 4, the actual clustered optical flow vector is
consistent with the predicted optical  f low vectors from two of  the previous three
frames.  Consequently, if  P' is defined as 0, 1, or 2 in this example, the clustered
vector in frame 4 would pass the temporal consistency test.  If P' is defined as 3, it
would fail the temporal consistency test.

3  Implementation of the algorithm

To collect test data for the algorithm, flight tests were conducted at NASA
Langley Research Center on April 30 and May 23, 1997.  In these tests, a Kodak
Megaplus ES 1.0 monochrome camera was mounted below the nose of a Boeing 737
to record a Beech King Air 200 flying in different trajectories.  The Boeing 737 flew at
a 150 knots and the Beech King Air flew at 200 knots.  The ground was continuously
within the FOV, providing a source of background clutter.  The camera recorded
images at a rate of 30 frames per second in 8–bit format, producing 256 gray levels.
The camera images were recorded in S–VHS videotape format and then digitized on
a Silicon Graphics (SGI) Onyx computer.  The final images had a 13 x 9.75 deg FOV
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with a pixel array of 646 x 486 (resulting in 50 pixels/deg).  A time code was inserted
on the video track to monitor each individual frame.

In addition to video imagery, navigational data were recorded.  These data
were used to compensate for host aircraft rotation, as discussed in the previous
section.  The navigational data was acquired at a different rate (20 Hz) than the
images (30 Hz), so interpolation was used to estimate the pitch, roll, and yaw at each
frame time.  The rotation angles of the camera are independent of the point on the
aircraft at which they were measured (because the camera was fixed to the rigid body
aircraft).  Camera translation caused by the rotation was negligible due to the
altitude of the aircraft.

A typical image recorded during the flight tests is shown in Fig. 3.  In this
condition, the target aircraft was located at a distance of about 1.2 nautical miles
(nmi) from the camera on the Boeing 737.

Fig. 3  Typical image recorded during the flight tests.  In this image, the target is
located in the lower portion of the image about 1 cm above the number 15.

In Fig. 3, the target is located against the earth in the lower portion of the image.  In
this image, the signal–to–noise ratio (SNR) is 28 dB, which is typical for an image in
this sequence.  The signal (S) is computed from the difference between the target
intensity values and the mean background intensity (B)25-26.  The target has
dimensions of 9 x 3 pixels (a total of 27 pixels).  The background is defined as the
border (four pixels wide) surrounding the target, resulting in background
dimensions of 17 x 11 pixels.  The SNR is defined as follows:

    
SNR = 20log10

Ii − B( )2

i=1

T
∑

σ B
(10)
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where Ii is the image intensity at target pixel i, T is the total number of target pixels

(27), B is the mean background intensity, and σB is the standard deviation of the
background intensity.

After camera motion compensation (step 1) and image smoothing (step 2),
optical flow vectors are computed with the gradient–based technique (step 3).  Next,
vectors with small magnitudes are discarded (step 4), and a spatial consistency test is
applied to isolate the vectors with characteristics corresponding to a translating
target (step 5).  In general, the spatial consistency test did not remove all false alarms,
as shown in Fig. 4.

Fig. 4  Clustered optical flow remaining after the spatial consistency test.  The 162
optical flow vectors shown here (in 14 clusters) correspond to the image in Fig. 2.
These vectors are scaled by a factor of 25 for clarity.

In the final step, the predictive technique is used to reduce the spurious
clustered optical flow vectors that are computed with the spatial consistency test.
An example of the predictive results is shown in Fig. 5 for a typical frame (frame
#201, which corresponds to Fig. 2).  In this example, predictions are made over
twelve frames, so P=12.  Consequently, the optical flow in frame #201 is predicted
from the clustered optical flow vectors in the previous 12 frames (frames #189-200).
The predictive test is based on correspondence for three of the twelve frames, so
P'=3.  In Fig. 5, the white areas represent regions in which the predicted optical flow
vectors from at least 3 of the previous 12 frames are in spatial correspondence.
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Fig. 5  Predicted positions of the translational flow vectors in the frame
corresponding to Fig. 2.  In 3 of the previous 12 frames, translational vectors are
predicted to occur at the white regions.

If the clustered optical flow vectors in frame #201 are located in the white regions of
Fig. 5, they pass the location component of the temporal consistency test.  If the
clustered optical flow vectors also pass the magnitude and direction components of
the temporal consistency test, they are defined as translational optical flow vectors
associated with an independently moving object.  Those vectors are shown in Fig. 6.

Fig. 6  Translational optical f low computed with the predictive technique for the
frame corresponding to Fig. 2.  These 27 translational flow vectors represent the
clustered flow vectors with locations, magnitudes, and directions within the
acceptable range dictated by the predictive test.  These vectors are scaled by a factor of
25 for clarity.
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Figs. 4–6 illustrate typical results for a single frame in a nine second (270
frame) sequence containing a moving aircraft.  The results over all frames are
summarized in Table 1 using a receiver operating characteristic (ROC) analysis27 .
ROC analysis is based on the number of frames (s) that contain a region with the
target and the number of frames (n ) that contain a region without the target.  The
target is located in 217 frames (frames 34-250), so s=217.  Every image contains
regions without the target, so n=270.  The term S refers to the number of frames
with hits and N  refers to the number of frames without hits.

 TARGET

 DETECTION

yes

no

yes no

HIT
p(S|s)

MISS
p(N|s)

FALSE
ALARM
p(S|n)

CORRECT
REJECTION

p(N|n)

82%

0% 100%

18%

Table 1  Stimulus–response matrix for classification of the algorithm performance.
As an example, probabilities for P=12 and P'=3 are shown in the lower right corner
of each box.

An image is defined as a hit if at least one of the detected target pixels corresponds
with an actual target pixel.  If no hits occur, the image is classified as a miss.
Consequently, p(S|s) + p(N |s) = 1.0.  An image is defined as a false alarm if the
algorithm marks at least one non–target pixel as a hit.  Otherwise the image is
labeled a correct rejection.  Consequently, p(S|n ) + p(N |n ) = 1.0.

Table 2 shows the results for several durations (P) in the predictive technique.
For each duration, the required overlap (P'/P) of location, magnitude, and direction
ranges from 0% to 100%.  The hit rate and false alarm rate both decrease with
increased overlap (P'/P) and increased duration (P).  The results indicate that a 25%
overlap with a duration of P=12 frames provide the highest hit rate (82%) with zero
false alarms.  When predictive techniques are not used, all optical flow vectors that
pass the spatial consistency test are used to mark the target.  In that case, the hit rate
is 97%, meaning that the target is correctly detected in 97% of the frames that
contained a target.  However, the false alarm rate is 100%, meaning that in every
frame at least one translational optical flow vector does not correspond to the target
location.
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FRAMES P

P'/P
(%)

0 (off) 4 8 12

0 97/100 --- --- ---
25 --- 86/34 85/1 82/0
50 --- 76/1 73/0 69/0
75 --- 54/0 33/0 18/0
100 --- 23/0 4/0 1/0

Table 2  ROC results ([hits]/[false alarms]) for the first scenario.  These results
demonstrate the effect of different number of frames used in the predictive
technique.  The term P refers to the number of frames used in the prediction
process.  The term P' refers to the number of those frames which satisfy the
temporal consistency test.  For example, if P'/P = 75% and P=8 frames, then 6 of
those 8 frames must be satisfied by the temporal consistency test.  If the prediction
technique is not used (P=0) false alarms occur in every frame.

As an additional test of the algorithm, the results were examined for a second
sequence (containing 160 frames) containing a moving aircraft.  This sequence is
similar to the first except that the background of the target aircraft is the sky instead
of the earth.  In this case, the typical SNR is 25dB, which is lower than the SNR in
the first sequence.  The hit rate and false alarm again decrease with increased
overlap (P'/P) and increased duration (P).  Once again, a 25% overlap with a
duration of P=12 frames provides the highest hit rate (78%) for zero false alarms.
The results for both predictive parameters (P' and P) are shown in Table 3.

FRAMES P

P'/P
(%)

0 (off) 4 8 12

0 96/100 --- --- ---
25 --- 96/14 93/1 78/0
50 --- 77/1 35/0 11/0
75 --- 28/0 3/0 0/0
100 --- 3/0 0/0 0/0

Table 3  ROC results ([hits]/[false alarms]) for the second scenario.  The parameters
here are identical to those in Table 2.

The results from these two sequences illustrate the effectiveness of the
predictive technique, which reduces the false alarms that remain after the spatial
consistency test (step 5).  An alternative means of reducing the false alarms while
maintaining a high hit rate is to modify the spatial consistency parameters.  For



McCandless JW (1999) Detection of aircraft in video sequences using a predictive optical flow algorithm. Optical Engineering, 3: 523-530.

14

example, if the magnitudes and orientation thresholds in Eqs. (7) and (8) are reduced
by 25%, the hit rate from the spatial consistency test in the first scenario is 82% (the
same hit rate that can be obtained with the predictive test).  However, the false
alarm rate is still high (98%), whereas the false alarm rate from the predictive
technique is 0%.  Using the same principle for the spatial consistency test in the
second scenario, the hit rate becomes 78% (the same hit rate that can be obtained
with the predictive test).  But once again, the false alarm rate is high (60%).  These
results illustrate that the predictive technique provides better performance than a
purely spatial consistency technique.

4  Discussion

The predictive technique provides an effective means of reducing false
alarms in optical flow computations.  Not surprisingly, both the hit rate and false
alarm rate decrease as the required overlap (P'/P) of the predictive technique
increases.  This occurs because the temporal consistency test adds an additional level
of stringency beyond the spatial consistency test in the computation of translational
optical flow vectors.  Temporal aliasing and quantization may limit the
effectiveness of the optical flow computations18 , thereby producing inaccurate
optical flow vectors in the region of the target.  Consequently, the stringent
predictive test provides a more accurate assessment of those vectors by discarding
those that are not temporally consistent.  The benefit of this approach is that all of
the false alarms can be discarded.  For both sequences, the highest hit rate with a
zero false alarms occur when three of the previous 12 frames are in correspondence
with the current frame.  These parameters provide a strong hit rate while
eliminating the false alarms.

Another possible mechanism for reducing false alarms would be
pre–processing to ignore regions with low contrast.  However, a low contrast region
could still correspond to the target because of hazy weather conditions.  In addition,
the size, projected shape, and surface reflection properties of potential aircraft are
unknown, thereby making contrast assumptions inappropriate.  Consequently,
optical flow computations are not restricted to high contrast regions in the image.

This algorithm was designed to produce accurate results without regards to
the time necessary to detect the target.  Currently, the algorithm is being refined to
work in real–time with a minimal decrement in performance.  For example, the
weights associated with the gradient–constraint equation can be changed to byte
format (e.g., 1/8, 4/8, and 5/8), thereby minimizing the number of bits necessary in
the hardware implementation.

A CCD camera with 256 gray levels and a 30 Hz provides an acceptable sensor
for this application.  In the current example with this camera, the target subtended
about 27 pixels (9 x 3).  For greater target distances, the camera FOV can be reduced so
that the same number of pixels are driven by target.  However, the trade–off is that
high frequency vibration can cause an unacceptable amount of motion in the image
surface, making spatio–temporal smoothing less effective.  Consequently, the
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accurate measurement of aircraft vibration and motion should be considered when
decreasing the camera FOV to provide more target pixels.

The predictive technique described here is similar to the temporal coherence
theory proposed by Grzywacz, Watamaniuk, and McKee28  to explain human motion
perception.  This theory accounted for psychophysical experiments in which subjects
attempted to detect a single dot that moved with consistent motion while
surrounding dots moved with random motion.  Speed information was discarded
in their implementation.  The predictive technique is different in that speed
information is used in validating the computation of optical flow vectors.  Another
difference is in terms of the velocity signals themselves.  With biological temporal
coherence theory, smoothing was applied to the outputs of directionally tuned cells
for biological plausibility, resulting in additional noise to the system.  With the
predictive technique, the velocity signals are used directly in coherence estimation.

A related approach to temporal coherence was taken by Kruger, Enkelmann,
and Rossle22  for detecting automobiles on the road.  Their key assumptions were
that camera rotation was zero and the ground surface was planar.  Kalman filtering
was used to make depth estimates and track optical flow vectors.  Tracking of
potential obstacles was terminated if there were no appropriate optical flow
measurements.  Because optical flow measurements are inherently noisy, the
predictive technique used in the current algorithm does not require accurate optical
flow measurements in every frame.  Consequently, this technique provides a more
robust means for detection of moving objects.
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